
Basic Idea Implementation Summary

Performance Analysis of Software System
Versions

(Performanzanalyse von
Softwaresystemversionen)

David Georg Reichelt

Universität Leipzig

22. Juli 2015

1 / 14



Basic Idea Implementation Summary

1 Basic Idea

2 Implementation
Current Implementation
Enhancement by Kieker

3 Summary

2 / 14



Basic Idea Implementation Summary

Basic Idea

currently little empirical research on performance anti-patterns
on code level
basic assumption: performance of unit tests corresponds to
performance of program
approach: analyse performance of units tests of revisions of a
program
⇒ get performance problems
goals

derivation of performance problem classes on code-level
quantification of occurence of performance problem classes

3 / 14



Basic Idea Implementation Summary

Current Implementation

Steps

steps
measurement of performance for all testcases in all revisions
identification of performance changes
identification of performance problems

main problem: performance measurements are instable

4 / 14



Basic Idea Implementation Summary

Current Implementation

Performance Measurement

Version
Download

Version Control System
CVS, SVN, git

Performance Test
Generation

Testframework
JUnit 3,4 + KoPeMe

Process-
instrumentation

Build Tools
Ant, maven

Test
Execution

Next
Version?[No]

[Yes]

5 / 14



Basic Idea Implementation Summary

Current Implementation

Identification of Performance Changes

Identify
change candidates boundary value, width

Execute Tests
Again boundary value, iterations

Manual
Source Code Analysis

6 / 14



Basic Idea Implementation Summary

Current Implementation

Type of Performance Changes

performance change

performance change
of program

performance change
of test case

functional requirements program structure

7 / 14



Basic Idea Implementation Summary

Current Implementation

Example Measurement

8 / 14



Basic Idea Implementation Summary

Current Implementation

Example Diff

9 / 14



Basic Idea Implementation Summary

Enhancement by Kieker

Shortcomings

identification is manual process
error-prone
time-consuming

⇒ Root-Cause Isolation of Performance Regressions (Heger et
al., 2013)
measurement takes much time and is not reliable
⇒ use Kieker for test selection

10 / 14



Basic Idea Implementation Summary

Enhancement by Kieker

Using Kieker for diff-analysis

Abbildung : Call Tree Analysis from (Heger et al., 2013)

11 / 14



Basic Idea Implementation Summary

Enhancement by Kieker

Using Kieker for diff-analysis

Currently
javaassist-instrumentation of methods with
kieker-measurement
reading the call tree

Next Steps
measurement-dependent choice of next instrumented
method(s)
use process in performance analysis of software system versions

12 / 14



Basic Idea Implementation Summary

Enhancement by Kieker

Using Kieker for test selection

Kieker ⇒ Get call-tree of test-case
VCS ⇒ Get changed method
only run test if call-tree of test contains changed method
⇒ save time for other tests

13 / 14



Basic Idea Implementation Summary

Summary

basic idea: examine development of performance of unit tests
during software development
goal: classification of typical performance problems
usage of kieker

Root-Cause Isolation of Performance Regressions
detection of relevant test-cases

14 / 14


	Basic Idea
	Implementation
	Current Implementation
	Enhancement by Kieker

	Summary

